Analisis Perilaku Mean Dataset Perubahan Garis Pantai pada Hasil Spasialtemporal Metode Empirical Orthogonal Function (EOF)
ABSTRACT: The purpose of this
study is to apply EOF method on shoreline change resulting spatialtemporal
analysis mode 1 and also to to prove the mean behavior on the spatial or
temporal of its EOF outcomes. The data used was obtained from shoreline coordinates
of shp file of the Bali island map and the result of breaking waves study, by
using a one-dimensional modeling yielded
dataset or prediction shoreline changes during 91 months. Calculation EOF 1,
the input matrix or dataset was initially not reduced by the mean but EOF 2
vice versa. Each matrix receive the same treatment were calculated covariance,
eigen value, eigen vector and principal component. EOF calculations obtained
the last five eigen value, the last five eigen vector, trace, principal component
and variant data. Based on the results obtained were compared parameters of two
matrices mentioned before. Spatially results both of EOF 1 and EOF 2 shows the same eigen vector
represented by the first mode of eigen vector. Similarly, the eigen value,
trace and variance of data, produce the same information. Significant
difference occurs in the principal component (temporal). EOF 1 shows that the
value of the first month produces a positive value, second month until month
91th output are minus. EOF 2 shows the
value of the principal component the first month until the 37th month are in a
positive position, then from month 38th to month 91th yielded negative results.
Nevertheless EOF 1 and EOF 2 showed shoreline changes tend to be erosion.
Tujuan dari penelitian ini adalah menerapkan metode EOF pada perubahan
garis pantai sehingga menghasilkan analisis spasialtemporal mode ke-1 dan juga
untuk membuktikan perilaku mean pada hasil spasial atau temporal hasil EOF
tersebut. Data yang digunakan diperoleh dari koordinat garis pantai file shp
dari peta pulau Bali dan hasil studi gelombang pecah, dengan menggunakan
pemodelan satu dimensi menghasilkan dataset atau prediksi perubahan garis
pantai selama 91 bulan. Perhitungan EOF 1, matriks input atau dataset awalnya
tidak dikurangi dengan rata-rata tetapi EOF 2 sebaliknya. Setiap matriks
menerima perlakuan yang sama dihitung covariance, eigen value, eigen vektor dan
principal component. Dari perhitungan EOF diperoleh eigen value lima terakhir,
eigen vcktor lima terakhir, trace, principal component dan variance data.
Berdasarkan hasil yang diperoleh dibandingkan parameter dua matriks sebelumnya.
Secara spasial hasil EOF 1 ataupun EOF 2 menunjukkan nilai eigen vector
yang sama yang diwakili oleh eigen vector mode pertama. Demikian pula pada eigen value, trace dan varian data, EOF 1 dan EOF 2 menghasilkan informasi yang
sama. Perbedaan yang siginifikan terjadi pada principal component (temporal).
Dari EOF 1 didapatkan bahwa nilai temporal bulan ke-1 menghasilkan nilai
positif, bulan ke-2 hingga bulan ke-91 output bernilai minus. Pada EOF 2 nilai
principal component ke-1 hingga bulan ke-37 berada pada posisi positif,
selanjutnya dari bulan ke-38 hingga bulan ke-91 menghasilkan nilai negatif. Meskipun demikian EOF 1 dan EOF 2 tetap menunjukkan garis
pantai yang cenderung mengalami erosi.
KEYWORDS: Empirical Orthogonal
Function, Principal Component Analysis, Perubahan garis pantai, Mean data
spasialtemporal
Penulis: Ida Ayu Putu Febri -
Imawati
Kode Jurnal: jptlisetrodd170032
