Sistem Multiagen untuk Pengklasteran Pendaki Menggunakan K-Means

Abstrak: Para pendaki pemula sebaiknya melakukan pendakian gunung secara berkelompok, namun metoda pengelompokan secara manual yang sedang berjalan saat ini tidak efektif dan efisien, terutama bagi para pendaki solo yang tidak memiliki komunitas pendakian gunung. Oleh karena itu perlu dibangun sebuah media online yang mampu mengelompokkan para pendaki gunung secara otomatis.Pengelompokan dilakukan dengan algoritma klastering K-Means berbasis agen cerdas. Agen-agen tersebut akan berkolaborasi dalam proses negosiasi menentukan anggota klaster yang memiliki kesamaan kriteria. Keuntungan utama darin pemanfaatan multiagen ini adalah proses pengklasteran dilakukan secara multithread. Agen-agen yang terlibat adalah agen user, agen basisdata, agen klastering, dan agen validasi. Agen- agen tersebut dibangun di atas platform JADE dengan bahasa komunikasi FIPA ACL. Evaluasi dilakukan terhadap 10, 100 dan 200 data dengan jumlah klaster tententu untuk menghitung nilai kohesi/kepadatan dalam 1 klaster dan jarak pisah antar-klaster. Metrik pengukuran yang digunakan adalah WGAD dan BGAD. Hasil yang diperoleh adalah kualitas anggota klaster yang lebih baik dibandingkan k-means biasa.
Kata kunci: agen, jade, fipa acl, wgad, bgad
Penulis: Maya Cendana dan Azhari S.N
Kode Jurnal: jptinformatikadd150271

Artikel Terkait :