Case-Based Reasoning untuk Diagnosis Penyakit Jantung

Abstract: Case Based Reasoning (CBR) is a computer system that used for reasoning old knowledge to solve new problems. It works by looking at the closest old case to the new case. This research attempts to establish a system of CBR  for diagnosing heart disease. The diagnosis process  is done by inserting new cases containing symptoms into the system, then  the similarity value calculation between cases  uses the nearest neighbor method similarity, minkowski distance similarity and euclidean distance similarity.
Case taken is the case with the highest similarity value. If a case does not succeed in the diagnosis or threshold <0.80, the case will be revised by experts. Revised successful cases are stored to add the systemknowledge. Method with the best diagnostic result accuracy will be used in building the CBR system for heart disease diagnosis.
The test results using medical records data validated by expert indicate that the system is able to recognize diseases heart using nearest neighbor similarity method, minskowski distance similarity and euclidean distance similarity correctly respectively of 100%. Using nearest neighbor get accuracy of 86.21%, minkowski 100%, and euclidean 94.83%
Keywords: case-based reasoning; nearest neighbor similarity; minkowski distance similarity; euclidean distance similarity
Penulis: Eka Wahyudi
Kode Jurnal: jptinformatikadd170111

Artikel Terkait :