Metode RCE-Kmeans untuk Clustering Data

Abstrak: Telah banyak metode yang dikembangkan untuk memecahkan berbagai masalah clustering. Salah satunya menggunakan metode-metode dari bidang kecerdasan kelompok seperti Particle Swarm Optimization (PSO). Metode Rapid Centroid Estimation (RCE) merupakan salah satu metode clustering yang berbasis PSO. RCE, seperti varian PSO clustering lainnya, memiliki kelebihan yaitu hasil clustering tidak tergantung pada inisialisasi pusat cluster awal. RCE juga memiliki waktu komputasi yang jauh lebih cepat dibandingkan dengan metode sebelumnya yaitu Particle Swarm Clustering (PSC) dan modified Particle Swarm Clustering (mPSC), tetapi metode RCE memiliki standar deviasi kualitas skema clustering yang lebih tinggi dibandingkan PSC dan mPSC dimana ini berpengaruh terhadap variansi hasil clustering. Hal ini terjadi karena equilibrium state, yaitu kondisi dimana posisi partikel tidak mengalami perubahan lagi, kurang tepat pada saat kriteria berhenti tercapai. Penelitian ini mengusulkan metode RCE-Kmeans yaitu metode yang mengaplikasikan K-means setelah equilibrium state metode RCE tercapai untuk memperbarui posisi partikel yang dihasilkan dari metode RCE. Hasil penelitian menunjukkan bahwa dari sepuluh dataset, metode RCE-Kmeans memiliki nilai kualitas skema clustering yang lebih baik pada 7 dataset dibandingkan K-means dan lebih baik pada 8 dataset dibandingkan dengan metode RCE. Penggunaan K-means pada metode RCE juga mampu menurunkan nilai standar deviasi dari metode RCE.
Kata kunci: Clustering Data, Particle Swarm, K-means, Rapid Centroid Estimation
Penulis: Izmy Alwiah Musdar, Azhari SN
Kode Jurnal: jptinformatikadd150258

Artikel Terkait :