Klasifikasi Data NAP (Nota Analisis Pembiayaan) untuk Prediksi Tingkat Keamanan Pemberian Kredit (Studi Kasus : Bank Syariah Mandiri Cabang Luwuk Sulawesi Tengah)

Abstrak: Setiap bulannya bank syariah mandiri cabang luwuk menerima proposal kredit (NAP) dari nasabah dalam jumlah yang terus meningkat dan perlu respon yang cepat. Dengan demikian, perlu dikembangkan sistem untuk melakukan data mining dari tumpukan data tersebut yang akan digunakan untuk kepentingan tertentu, salah satunya adalah untuk menganalisis resiko pemberian kredit.Teknik data mining digunakan dalam penelitian ini untuk klasifikasi tingkat keamanan pemberian kredit dengan menerapakan algoritma Naïve Bayes Classificatio. Naive bayes classifier merupakan pendekatan yang mengacu pada teorema Bayes yang menkombinasikan pengetahuan sebelumnya dengan pengetahuan baru, sehingga merupakan salah satu algoritma klasifikasi yang sederhana namun memiliki akurasi tinggi.  Sebelum dilakukan klasifikasi, data debitur melalui preprocessing. Kemudian dari preprocessing ini dilakukan klasifikasi dengan naive bayes classifier, sehingga menghasilkan model probabilitas klasifikasi untuk prediksi kelas pada debitur selanjutnya. Teknik pengujian akurasi model diukur menggunakan boostrap, dan menunjukkan bahwa nilai akurasi terkecil 80% dihasilkan pada sampel data 100, dan menghasilkan nilai akurasi terbesar 98,66% pada sampel data 463.
Kata kunci:  akurasi, naive bayes, data mining, klasifikasi, preprocessing, NAP
Penulis: Sumarni Adi, Edi Winarko
Kode Jurnal: jptinformatikadd150275

Artikel Terkait :