CIELab Color Moments: Alternative Descriptors for LANDSAT Images Classification System

Abstract: This study compares the image classification  system  based  on  normalized  difference  vegetation index (NDVI) and Latent  Dirichlet  Allocation  (LDA)  using  CIELab  color  moments  as  image  descriptors.    It  was  implemented  for LANDSAT images classification by evaluating the accuracy values of classification systems. The aim of this study is to evaluate  whether  the  CIELab  color  moments  can  be  used  as  an  alternatif  descriptor  replacing  NDVI  when  it  is implemented using LDA-based classification model.  The result shows that the LDA-based image classification system using CIELab color moments provides better performance accuracy than the NDVI-based image classification system, i.e  87.43%  and  86.25%  for  LDA-based and NDVI-based respectively.  Therefore, we conclude that the CIELab color moments  which  are  implemented under  the  LDA-based  image  classification  system  can  be  assigned  as  alternative image descriptors for the remote sensing image classification systems with the limited data availability, especially when the data only available in true color composite images. 
Keywords: Normalized Difference Vegetation  Index,  CIELab,  color  moments,  Latent  Dirichlet  Allocation,  LANDSAT, remote sensing image classification
Author: Retno Kusumaningrum, Hisar Maruli Manurung, Aniati Murni Arymurthy
Journal Code: jptinformatikagg140004

Artikel Terkait :