SUMMARY OF THE RECENT DEVELOPED TECHNIQUES FOR MACHINE HEALTH PROGNOSTICS

ABSTRACT: This  paper  reviews  relatively  new  developed  techniques  for  machine  health  prognostics  system.  The prognostics  assessment  of  machines  is  an  important  consideration  for  determining  the  remaining useful  life  (RUL)  of  machine  components  and  prediction  of  future  state  of  machines.  The  developed system has employed several approaches of machine health prognostics strategy such as data-driven, physical-based,  and  probability-based  methods.  The  method  of  solution  implemented  artificial intelligence  techniques  including  support  vector  machine  (SVM),  relevance  vector  machine  (RVM), Dempster-Shafer theory, decision tree, particle filter, and autoregressive moving average/ generalized autoregressive  conditional heteroscedasticity  (ARMA/GARCH).  Case  studies  of  machine  health prognostics  are  also  presented  to  show  the  plausibility  of  the  developed  systems.  Finally,  this  paper summarizes the research finding and directions of machine health prognostics system.
Keywords: artificial intelligence, machine prognostics, remaining useful life
Author: Achmad Widodo, Wahyu Caesarendra
Journal Code: jptmesingg140004

Artikel Terkait :