Optimasi Manajemen Rantai Pasokan (Supply Chain Management) dengan Metode Hybrid Algoritma Genetika dan Simulated Annealing

Abstract: The  purpose  of  this  paper  is  to  solve  the  problem  of  optimization  of  supply  chain management  (supply  chain  management)  using  a  hybrid  genetic  algorithm  and  simulated annealing.  Supply  chain  management  is  defined  a  problem  to  obtain  the  optimal  solutions  that impact  on  supply  chain  costs  in  the  production  process  of  delivering  goods  and  services  to customers. Genetic algorithm is searching solution algorithm that copy the mechanics of selection and natural evolution. Simulated Annealing is analogous method to the annealing process. H ybrid of  genetic  algorithm  and  simulated  annealing  algorithm  is  a  combination  of  both  processes  by insert a simulated annealing algorithm to the process of genetic algorithms. The algorithm process begins  with  entering  data  distribution  supply  chain,  initialization  parameters,  generating  initial solutions, evaluation and fitness of each solution, determine the prospective parent with roulette wheel  selection,  crossover  convex  crossover  perform,  modify  child  with  simulated  annealing, valuation,  decrease  the  temperature,  modify  child  simulated  annealing,  combining  the  solution with an initial population, make a selection in a combined solution, the process continues until the maximum iteration. The data used is the 2 plants, 2 distribution centers, and 6 customers, a data is 2 plants, 3 distribution centers, 8 customers, the data is 2 plants, 4 distribution, 8 customers, the data  is  4  plant,  3  distribution  centers,  customer  5.  By  using  the  Java  programming  language Netbeans IDE 7.0.1 then obtained the minimum distribution cost for a data 2 plants , 3 distribution centers,  4  customers  is  27874  units  of  currency,  for  the  data  2  plants,  2  distribution  centers,  6 customers is 156214 units of currency, for the data 2 plants, 4 distribution centers, 8 customers is 86001 units of currency, and to the data 4 plant, 3 distribution centers, 5 customers is 116500 units of currency.
Keywords: Genetic Algorithm, Hybrid, Simulated Annealing, Supply Chain Management
Penulis: Lovianti Rizki Lakshitasari, Herry Suprajitno, Auli Damayanti
Kode Jurnal: jpmatematikadd140054

Artikel Terkait :