PENGENALAN KARAKTER PADA SURAT MASUK MENGGUNAKAN NEURAL NETWORK BACKPROPAGATION

Abstract: A  letter  is  a  means  of  communication to convey information in writing by one party to the  other  party.  It  functions  include  five  things: means  notices,  requests,  thoughts  and  ideas.  A formal  letter  is  a  letter  that  contain  the  official or a particular business problem. Along with the increasing  demand  for  the  current  document digitalization,  OCR  (Optical  Character Recognition)  application    is  often  used  to identify  the  image  of  characters  then  will  be converted into text files. Furthermore, Artificial Neural  Network  is  one  kind  of  technology approach  that  promising  can  increase  the computer's  ability  to  recognize  and  represent pattern.  Meanwhile,  Backpropagation  is  one kind  of  neural  network  algorithm  which common  used.  Therefore,  a  character recognition  application  using  neural  network backpropagation  will  be  designed.  Application need  a  data  image  of  document  letter  as  an input,  it’s  obtained  from  scanning,  then continued  by  pre-processing,  segmentation, normalization size process. After all, it’s ready to  be  processed  in  network  and  will  get characters  text  as  an  output.  Result  of  the  test had  been  showed  that,  the  best  recognition accuracy  rate  on  the  characters  trained,  font Arial, with learning rate (α) 0.2,  momentum (µ) 0.5  and  15  epoch  is  71.95%  and  for  the characters  without  trained,  font  Times  New Roman  and  Courier  New,  the  recognition accuracy  rate  is  40.24%.  Overall,  the  result  of percentage  success  the  recognition  of  790 characters in 15 document letter is 84.56%.
Keywords: character  recognition, neural network,  backpropagation,  pattern recognition,  optical  character recognition
Penulis: Rizqia Lestika Atimi
Kode Jurnal: jptinformatikadd130170

Artikel Terkait :