EFISIENSI SIRIP BERBENTUK SILINDER

Abstract: To cool the processor, when the computer is running, usually processor fitted with fins. With the fin, heat from the processor can be  transferred to the air around the fin  become  larger.  This  study  aimed  to  obtain  the  relationship  between (1)  (Lc+0,25D)((2h/(kD))0.5 with  an  efficiency  η (2)  Lc3/2 (hk/Am)0.5 with  an efficiency  η (3)  Lc((π/Ao)1/2(h/k))0.5 with  an  efficiency  η (4)  Lc5/4(((3,14/V)1/2)(h/k))0,5 with  an  efficiency  η and  (5)  (Lc3/2)((3,14/S)(h/k))0.5 with efficiency η. In  this study, geometry  of  fin is cylinder. Material of  fin is metal, long of fin  is L=Lc,  and  diameter  of  fin  is  D.  All  the  surfaces  of fin  contact  with  the  fluid. The  initial  temperature  of  fin  is  uniform,  T=Ti.  Then  fin  is  placed  in  the  new environment. Temperature of the new environment is T∞, coefficient of convection heat  transfer  is  h.  Temperature  of  fin  base  is  Tb.  Value  of  T∞,  Tb  and  h  are maintained at a fixed value from time to time. In this study, value of Tb is equal to Ti.  The  density  ρ and  specific  heat  c  of  fin  material  is  considered  uniform  and unchanging,  while  value  of  thermal  conductivity  k  varies  with  temperature  or k=k(T). Conduction heat flow that goes on in the fin is assumed to take place in one direction, perpendicular to base of the fin or in the direction x. The study was conducted with the sequence of steps : (1) calculating the temperature distribution of the fin on the unsteady state, (2) calculating the actual heat flow rate released by the fin on the unsteady state, (3) calculating the heat flow rate released by fin if all  the  surfaces  of  fin  which  make  contact  with  the fluid,  have  the  same temperature  with  a  temperature  of  fin  base,  (4)  calculating  the  value (Lc+0,25D)((2h/(kD))0,5, Lc3/2(hk/Am) 0,5, Lc((π/Ao)1/2(h/k))0,5, Lc5/4(((3,14/V)1/2) (h/k))0,5,  (Lc3/2)((3,14/S)(h/k))0.5 and  fin  efficiency  η on  the  unsteady  state, (5)  drawing  graphs.  Calculation  of  temperature  distribution  on  fin  on  unsteady state  was  done  by  numerical  simulation  with  finite  difference  method.  Finite difference method used is an explicit method. The  result  of  study,  show  that  (1)  If  the  value  of  (Lc+0,25D)((2h/(kD))0,5 ; Lc3/2(hk/Am)0,5; Lc((π/Ao)1/2(h/k))0,5; Lc5/4(((3,14/V)1/2)(h/k))0,5and (Lc3/2)((3,14/S) (h/k))0,5getting bigger, then the value of fin efficiency ηdecreases. (2) if the value of  convection  heat  transfer  coefficient  h  getting  bigger,  then  the  value  of  fin efficiency  η smaller  (3)  For  steady-state,  if  the  value  of  thermal  conductivity  of materials increases greater then the value of fin efficiency ηincreases.
Keywords: Finite difference method, Fin Efficiency, Unsteady state Explicit
Penulis: PK Purwadi
Kode Jurnal: jptmesindd100131

Artikel Terkait :