APLIKASI JARINGAN SYARAF TIRUAN BERBASIS RADIAL UNTUK MENENTUKAN PREDIKSI WAKTU PENGERINGAN GABAH PADA PENGERING RADIASI INFRA MERAH

Abstract: The aim of this research is for predicting the timeof drying on infrared radiation dryer  by  using  artificial  neural  network  with  Radial  Base  Function  (RBF) Algorithm. The RBF neural network was created and trained by using set of data that  are  taken  from  actual  measurement.  The  parameters  are  used  on  network training namely radiation intensity on preheating and main heating stage, variety input  power  of  the  infra  red  on  preheating  and  main heating  stage,  kinds  of reflector  on  main  heating  stage  and  thickness  of  paddy  for  determining  drying time. There were 36 variations data, includes 26 data are taken as training data for the net to learn. The rest data will be taken  as test data for the net. Results showed that prediction data were closed to actual results. The MSE  for the drying time prediction for training and testing average byusing RBF showed 0.0003 % and  2.62%  respectively  compare  to  backpropagation  1.064%  and  6.595% respectively.  For  the  computation  time  showed  RBF  was  faster  than backpropagation.  The  time  computation  results  for  RBF  and  backpropagation achieved  0.511  sec  and  28  sec  respectively.   From  above  result,  it  can  be concluded that RBF is very fast and accurate for predicting drying time on infra red radiation dryer model compare to backpropagation.
Penulis: Muhammad Nizam
Keywords: Artificial neural network, RBF, Backpropagation, Prediction, Drying time
Kode Jurnal: jptmesindd100128

Artikel Terkait :